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ABSTRACT

In a deregulated power market, generating compai@escos) evaluate bidding strategies to maximiesr t
profit. A Genco has to make a decision based ondiarinformation available, since it does not kndw &ctual system
Market Clearing Price (MCP) beforehand. Thus, atinmgd bidding strategy is a challenging task for nGes.
Accurately forecasted MCP will aid as vital infortioa in enhancing the chances of winning bids aigds competitive
electricity markets. Based on the literatures, aknetworks are used in most of the forecastindiegpons. This paper
proposes a near optimal ANN architecture basedraligg price forecast engine using the availabistdrical data for
forecasting MCP in Indian Energy exchange (IEX)isTpaper uses a similar-day approach for forecgdtie MCP.
The recent available historical data frofhJanuary 2014 to fBVlarch 2014 is used in this research work. Thisepaso

investigates the performance related issues witlvéinious ANN architecture models.

KEYWORDS: Error Variance, Feed Forward Back Propagation NeNeavork, Market Clearing Price, Mean Absolute

Percentage Error, Normalized Mean Square Error
1. INTRODUCTION

A decisive issue for all market participants irddg’s restructured electricity power industry haset the
electricity price forecasting. A precise price foasting helps suppliers to set up bidding strategieake investment
decisions and be cautious against risks. Converselysumers can use price forecasting to explgtrapiate power
purchasing strategies for maximum utility utilizati Electricity market clearing price (MCP) is thiice that exists when
an electric market is clear of shortage and surflislt is the final outcome of market bidding @ei When electricity
MCP is determined, every supplier whose offeringepiis below or equal to the electricity MCP wik Ipicked up to
supply electricity at that hour. They will be paid the same price, the electricity MCP, not thecgorihey offered.
The reason for this is to keep fairness of the mtadnd to avoid market manipulation. The accuracthe forecast
depends on the availability of the data and furthegwends on other influential price drivers suckdatility in fuel price,
load uncertainty, fluctuations in hydroelectricfiyoduction, generation uncertainties, transmissimngestion, behaviour

of market participants etc...

Owing to the significance and intricacies of thecgicity price forecasting, several methods hbgen proposed

by researchers for short-term price forecastingoAgnthese methods, two extensively used approakeime series [2]
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models and artificial neural networks (ANNs)[3]. Erseries models such as dynamic regression ansfdrafanction,
ARIMA [1], EGARCH (exponential GARCH) [4,5], WT-ARIA model [6] have been proposed for this purpose.
However, most time series models are linear predicwhich have difficulties in predicting the hardnlinear behaviour

of electricity price.

ANNs have also been used by many researchers rfoe forecasting. Yamin et al. [7] have proposed a
comprehensive model using ANN for short-term eleityr price forecasting. Zhang et al. [8] have apglthe cascaded
architecture of multiple ANN to forecast the markdétaring price (MCP) in New England to improve tediction
accuracy, other approaches considering hybrid mbdeé been proposed. Rodriguez and Anders [9] pasposed a
combination of neural networks and fuzzy logic R6€CP prediction in the Ontario electricity market. dt al. [10] have
presented the fuzzy inference system and leastaguestimation for price forecasting. Though ANNsdxh forecast
engines are developed, the network architecturetlamaenanner in which the available historical da¢éng used will be
different for different electricity markets or eggrexchanges. Therefore, with the available dagsighing the near

optimal ANN architecture for a typical exchangalhaays challenging.
2. PROPOSED WORK

The proposed work is carried out for forecastingrhat clearing price of the Indian Energy Exchariget so
many literatures are available for the forecasM@P in the Indian Energy Exchange (IEX). IEX is amiethe India’s
electricity power trading platform, Over 2600 peaigants across utilities from 27 states, 5 Unionrrilaies,
more than 500 private generators and more than 2@ access consumers are doing business withtdEXanage
power portfolio in the most competitive and relmbivay. Day-Ahead and Term-Ahead market is folloviedthe
IEX. Day-Ahead-Market (DAM) is a physical electticitrading market for deliveries for any/some/all hinute time
blocks in 24 hours of next day starting from midnigrhe prices and quantum of electricity to belég are determined
through a double sided closed auction bidding pec&erm-Ahead-Market (TAM) provides a range ofduas allowing
participants to buy/sell electricity for contratisyond day-ahead market, besides intraday contaei®.iexindia.conj.
The proposed work concentrates in forecasting tharhh Weak-Ahead Market Clearing price which is thart of

TAM using a similar day approach using feed forwlaagk propagation neural network (FFBPNN).

The activities of the consumers are found to Ibglar on the same week days. So, in this case std@P of
similar days is correlated for training the histatiMCP data. For example, the MCP profile on Mgndhthe previous
week is correlated to Monday of the present weekwBen a test input is fed into the forecast moaeleek-ahead MCP
profile is forecasted. Various architectures of PRB\ are tried out and the best one is proposeddateis pre-processed

by normalizing the load between 0.1 and 0.9 ancésl in this work.
3. HISTORICAL DATA OF IEX

The historical data reports that are availablh&nIEX website as market snapshot are considerdtiproposed
work. The market snap shot consist of the hourlscRase Bid (MW), Sell Bid (MW), Market Clearing Mohe (MW),
Cleared Volume (MW) and Market Clearing Price (MCR)arket Clearing Volume (MCV) is carried out befor
transmission congestion, whereas Cleared Volumeé {€¥arried out after transmission congestiois itery important to

understand the nature of the recorded data whicl bmea vital or very much related to the MCP. Sometm
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the performance of the forecast largely varies tdude homogeneity of the data used. It shoulddiechthat the Market
Clearing Price is non-homogenous in nature. Theeefanderstanding the shape of the historical diateijl be easier to
choose the right data for the development of ttip@sed forecast engine. The market snapshot dafadb75 days is

presented in the Figure 1.
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Figure 1: Market Snapshot of Historical Data (£' 75 Days of the Year 2014)

The total number of samples for the 75 days i209Fhe wave form profile of Purchase Bid (PB), 8all (SB),
Market Clearing Volume (MCV), Cleared Volume (C\daMarket Clearing Price (MCP) are found to be hgemus in
nature. Since the all data is non- homogenous tur@athe correlation of any combination of the aveforms
(PB, SB, MCV, CV and MCP) with that of the Markele@ring Price (MCP) need to be explored in the dast engine.
However, all possible architectures will be triad m the following section before a near optim&M model is proposed
for the IEX. The training data, validation data atiee testing data for the FFBNN is considered ofnbym the
19320 samples. The source and the target trairitayfdr FFBNN training is taken froni'Jan 2014 to 26Feb 2014, and
from 8" Jan 2014 to 8 Mar 2014, respectively. The validation data isetakrom 13' Feb 2014 to 19 Feb 2014 and is
compared with the actual data from"™2Beb 2014 to 26 Feb 2014. The testing or verification data is takem
26" Feb 2014 to 8 Mar 2014, and is compared with the actual datmf68 Mar 2014 to 12 Mar 2014. It should be noted
that the testing data is not used in the trainieigvenereas the validation data is used in theitrgiset. Validation is

carried out while training to check that the netkvdo not over train, thereby the forecast accumitiynot deteriorate.

4, PROPOSED METHODOLOGY
4.1 Architecture

The architecture of the feed forward back progagabeural network is given in Figure 2. This ANNodel
consists of ‘M’ input nodes and ‘O’ output nodethwiH’ hidden nodes in the hidden layer. The hiddayer and the

output layer nodes consist of log-sigmoid tranfifiaction whose output value will in the range bedw® and 1.
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Figure 2: Architecture of Feed Forward Back Propag&ion Neural Network (FFBPNN)

The historical dataset is usually not used diyeatl process modelling of ANNs due to the differenio
magnitude of the process variables. Therefore,dda needs to be scaled to a fixed range to prawemecessary
domination of certain variables, and to preventdaith larger magnitude from overriding the smabexd impede the
premature learning process. The choice of rangerdipon transfer function of the output nodes inNANypically,
[0, 1] for sigmoid function and [-1, 1] for hypeldmtangent function. However, due to nonlineansfer function has

asymptotic limits; the range of dataset is alwagfsstightly less than the lower and upper limits this work, since the

sigmoid function is adopted, the data is normalizedhe range of [0.1-0.9]. i.e., IK;and X,is the maximum and

minimum value of the training set, respectivelgrtlihe normalised data is given B{X) as in (4.1).

NG = ((x -x,)x (01~ 0.9)] 09 @)
(X, =Xy)

Based on the data being sent in the forecast eranfollowing cases of various architecturespaoposed and
the performance related to training error and fase@ccuracy are discussed. In all possible anthite the output node
remains one and the number of hidden nodes isastdbon trial and error. To understand the relatignof all the
5 waveforms with that of the MCP, the number ofuhpodes varies from 1 to 5. The training datasatdation data and

testing data is created based on the similar dasoagh.
Case-l (5-H-1 FFBNN Architecture)

The network architecture consists of 5 input nogled 1 output node. All the 5 input waveforms aireig as

input for the training set.
Case-ll (4-H-1 FFBNN Architecture)

The network architecture consists of 4 input noded 1 output node. If the 5 waveforms are repteseas
(PB,-1 SB-2, MCV-3, CV-4 and MCP-5), then the faliag 5 combination of input data need to be evaddor the
ANN model. They are 4(1)-H-1, 4(2)-H-1, 4(3)-H-1(4%H-1 and 4(5)-H-1. The number within the bracketthe

waveform which is not considered. For example,(2)4-1, the 2° waveform (Sell Bid Price) is not considered.
Case-lll (3-H-1 FFBNN Architecture)

The network architecture consists of 3 input noaled 1 output node. There will be 10 possible coiminns.
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They are 3(1-2)-H-1, 3(1-3)-H-1, 3(1-4)-H-1, 3(H3)1, 3(2-3)-H-1, 3(2-4)-H-1, 3(2-5)-H-1, 3(3-4)-H-3(3-5)-H-1 and

3(4-5)-H-1. The numbers within the bracket arewlaeeform which are not considered
Case-IV (2-H-1 FFBNN Architecture)

The network architecture consists of 2 input noded 1 output node. There will be 9 possible couiions.
They are 2(1-2-3)-H-1, 2(1-3-4)-H-1, 2(1-4-5)-HZ(2-3-4)-H-1, 2(2-4-5)-H-1, 2(2-5-1)-H-1, 2(3-4-B)-1, 2(3-5-1)-H-1
and 2(3-5-2)-H-1.

Case-V (1-H-1 FFBNN Architecture)

The network architecture consists of 2 input nodled 1 output node. There will be 5 possible couiins.
They are 1(2-3-4-5)-H-1, 1(1-3-4-5)-H-1, 1(1-2-4¥$)1, 1(1-2-3-5)-H-1 and 1(1-2-3-4)-H-1.

4.2 Step by Step Algorithm of FFBPNN Architecture

Nomenclature

I Input training vector
1 =iy yy)

T Output target vector
T= (tl,...,ty,...,to)

d,  Error correction weight adjustment forvdue to an error at output uniy K

3y Error correction weight adjustment fap\due to an error at hidden unit J

a Learning rate
_ 1 Activation function or Threshold function

feum=———

1+exp(-sum

Step 1: Set the trial number tr =1

Step 2: Set the epoch ep =1

Step 3: Generate the weights randomly to small random wah&tween 0 and 1 to ensure that the network is not

saturated by large values of weights. Let | anceThe normalized input and target training vectont

set of P number of training patterns.
Step 4: Choose a training pair from the training set.
Step 5: For each training pair, do steps 6 -11
Step 6: Each input unit receives input signabind broadcasts this signal to all units in thelbidlayer J.

Step 7: Each hidden unit,Jsums its weighted input signals and the net inpuhe hidden unit is given as in
(4.2) and the output at the hidden layer (J) i®gigs in (4.3). Send the output of the hidden laigrals

to all units in the output units.
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M

sumy, =by + i XV, (4.2)
n=1

foum,) = ———— (43)

1+exp(sum,)

Step 8: Each output unit Ksums its weighted input signals and the net itpuhe output unit is given as in
(4.4) and the output at the output layer (K) isegivas in (4.5).

H

sumy, = by +> 3, xW,, (4.4)
h=1

feum,) = I S (4.5)

1+exp(-sumy,)
Back Propagation of Error

Step 9: Each output uniK, receives a target pattern corresponding to thatitaining pattern, computes its
error information term as in (4.6) and calculatssweight correction term as in (4.7) which is used

update W, later.
o, =(t, —K,) x f gum,,) (4.6)
Aw,, =axd, x feum,) (4.7)
The bias correction term is given in (4.8)
Ab, =axd, (4.8)

Step 10:Each hidden unid, sums its delta inputs as in (4.9), multiplies bg terivative of its activation function

to calculate its error information term as in (4.&40d calculates its weight correction term astinl)

O
sumy, = Y 8, xW,, (4.9)
n=1
5, =sum, x f gum,) (4.10)
Av,, =axd, xi, (4.11)

The bias correction term is given in (4.12)
Ab, = axd, (412

Update Weights and Biases

Step 11:Each output unit Kupdates its weights and bias as in (4.13) andtj4Also each hidden unit dipdates
its weights and bias as in (4.15) and (4.16).
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w,, (new) =w, (old) +Aw,, (4.13)
b, (hew) = b, (old) + Ab, (4.14)
w,, (hew) =w,, (old) + Aw (4.15)
b, (hew) = b, (old) + Ab, (4.16)

Go to Step 5, till all the training pairs in theihing set are sent into the input layer | (oneatpis over).

Otherwise go to Step 12.

Step 12.Do again Step 4 to Step 8 till all the trainingrpain the training set are sent into the input taye
Calculate the erroreg(), the difference between the network output arel dbsired output, for all the
training pairs as in (4.17) and then the averagamwguared error (AMSE) as in (4.18), which is

calculated for every epoch. Update ep=ep+1.

e =T/ -K 4.17)
(0]
| 2o
=
2o
AMSE = — (4.18)

Step 13Repeat steps 2-12, if ep<TE (total number epockisg go to step 14. The total number of epochs is
fixed based on trial and error approach such thatAMSE obtained is the least. Record the final
weights and biases obtained for the trial numberltrUpdate tr = tr+1. Also if the validation errisr
increasing and if the number validation checksgaeater than the validation count (VC), then st t

training for the current trial and update tr = tr+1

Step 14Do sufficient numbers of trials (TR) and record tfeal weights obtained in each of the trials.

If tr < TR, go to step 1, else stop the execution.
4.3 Performance Evaluation

The accuracy of the results in this case studyvéduated based on three error indices. They aesnMAbsolute
Percentage Error (MAPE), Normalized Mean SquarerE(NMSE) and Error Variance (EV). The Mean Abselut
Percentage Error (MAPE) is defined by the followatgation (4.19).

wape = L A sl (4.19)

NMSE (Nima Amjadyet al, 2011) [11] is defined as

2

1 NH (4.20)

NMSE =| —— > [P - A
{AZNH i§1( ! |j ]
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WhereA = 1

NH

-1. g‘ (Ai _AAVe)

=1

2

EV (Nima Amjadyet al, 2011) [11] is defined as

2
62 =

= (4.21)
NH

y [H—L Al mape

=1 A

Where,P, andA, are the'f predicted and actual values respectivaly, is the mean of the actual value axiid is

1 NH[P

the total number of predictions.

5. RESULTS AND DISCUSSIONS

The five types of architectures mentioned in sectid is simulated for ten number of trials. Aistital analysis

considering the average of the performance indioesll the trials is evaluated. The parameterisgstin all the five

architectures such as learning rate (0.9), momefaictor (0.9), slope factor (0.05) and validati@ut (VC=10) are kept

same so as to have a fair comparison on the saeremee among the architectures. The weights aasl doie initialized

randomly between zero to one. The number of episckept same for all the architectures as 1000.Aumber of nodes

in the hidden layer is kept as H=20.

Tables 1-5 give the best and average of all thtopaance indices for all the cases. From the regiilable 1-5),

five best performing architectures are grouped dasethe lowest average error and are given finggaccording to their

performance in Table 6 below. Table 6 gives thaitkebf the five best architectures. Here, the nekwvhich consists of

two input nodes with Purchase Bid and Market ClepRrice data as input is ranked | as the besbpeiig architecture
with an average Training Error=4.7774E-05, ValidatError=1.1072E+01, MAPE=1.4428E+01, NMSE=1.46%4Eand
EV=2.0406E+02.

Table 1: Case-l (5-H-1)

Architecture Training Validation Performance Indices (Testing/Verification)
Error (AMSE) | Error (MAPE) MAPE NMSE EV
5-H-1 Best 4.0499E-05 8.2242E+00 1.4681E+01 1.3885K-07 112ZE+02
Average 4.0543E-05 8.2406E+00 1.4689E+01 1.3894FE-02.1149E+02
Table 2: Case-ll (4-H-1)
Architecture Training Validation Performance Indices (Testing/Verification)
Error (AMSE) | Error (MAPE) MAPE NMSE EV

4(1)-H-1 Best 4.0828E-05 7.5049E+00 1.5701E+01 1.6034E:07 4163E+02
Average 4.0901E-05 7.5264E+00 1.5772E+401  1.6137E;02.4383E+02
4(2)-H-1 Best 4.7406E-05 1.0906E+01 1.4421E+01 1.4131E:07 0383E+02
Average 4.7583E-05 1.0937E+01] 1.4474E+401  1.4244E;02.0533E+02
4(3)-H-1 Best 4.2252E-05 8.5164E+00 1.4889E+01  1.4046E:07 173PDE+02
Average 4.2263E-05 8.5186E+00 1.4905E+01  1.4063E;02.1774E+02
A(4)-H-1 Best 4.0448E-05 8.1838E+00 1.4548E+01  1.3752E:07 074BE+02
Average 4.0483E-05 8.2066E+00 1.4572E+401  1.3787E;02.0812E+02
4(5)-H-1 Best 4.7194E-05 9.2728E+00 1.6891E+01 1.8534E:07 7962E+02
Average 4.7280E-05 9.2766E+00 1.6902E+01  1.8582E;02.8003E+02
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Table 3: Case-lll (3-H-1)

ol s Training Validation Performance Indices (Testing/Verification)
Error (AMSE) | Error (MAPE) MAPE NMSE EV
3(1-2)-H-1 Best 6.1538E-05 1.4202E+01 2.1478E+01 2.9060EZ_-O7 52146E+02
Average 6.2337E-05 1.4333E+01 2.1689E+401 2.9536E-04.6109E+02
3(1-3)-H-1 Best 4.6265E-05 8.2380E+00 1.6989E+01 1.7785EZ_-O7 82921E+02
Average 4.6409E-05 8.2643E+00 1.7067E+01 1.7906K-02.8551E+02
3(1-4)-H-1 Best 4.0168E-05 7.3845E+00 1.5777E+01 1.5679E1_-O7 440DE+02
Average 4.0397E-05 7.4171E+00 1.5895E+01 1.5850E-02.4766E+02
3(1-5)-H-1 Best 5.2585E-05 9.2638E+00 2.0495E+01 2.7967E1_-O7 1172E+02
Average 5.3010E-05 9.4481E+00 2.0744E+401 2.8455E-04.2184E+02
3(2-3)-H-1 Best 4.7303E-05 1.0974E+01 1.4325E+01 1.4119EZ_-O7 0112E+02
Average 4.8002E-05 1.1118E+01 1.4593E+01 1.4650E-02.0876E+02
3(2-4)-H-1 Best 4.8068E-05 1.0962E+01 1.4412E+01 1.4603E1_-O7 0358E+02
Average 4.8278E-05 1.1010E+01 1.4495E+01 1.4744E-02.0595E+02
3(2-5)-H-1 Best 8.6617E-05 1.6717E+01 2.4366E+01 3.8160E1_-O7 8193 F+02
Average 8.6632E-05 1.6779E+01 2.4474E401 3.8511E-0%.8711E+02
3(3-4)-H-1 Best 4.2215E-05 8.4959E+00 1.4847E+01 1.3919E1_-O7 1608E+02
Average 4.2196E-05 8.5052E+00 1.4860E+01 1.3918E-02.1645E+02
3(3-5)-H-1 Best 4.9472E-05 9.7010E+00 1.7193E+01 1.8833E1_-O7 8972E+02
Average 4.9520E-05 9.7126E+00 1.7207E+401 1.8871KE-02.9020E+02
3(4-5)-H-1 Best 4.6918E-05 9.2394E+00 1.6725E+01 1.8273E-07 741BE+02
Average 4.6843E-05 9.2562E+00 1.6752E+401 1.8299E-02.7506E+02
Table 4: Case-IV (2-H-1)
hi Training Validation Performance Indices (During Testing)
Al IUEEE Error (AMSE) | Error (MAPE) | MAPE NMSE EV
2(1-2-3)-H-1 Best 7.7646E-05 1.7006E+01 2.5066E+401  3.8325E107 1585E+02
Average 8.6740E-05 1.8319E+01 2.6790E+01  1.5502E}0%.0496E+02
2(1-3-4)-H-1 Best 4.8678E-05 8.4985E+00 1.8032E401  1.8559E;07 1878E+02
Average 4.8842E-05 8.5286E+0( 1.8109E401  1.8707E{03.2145E+02
2(1-4-5)-H-1 Best 5.2865E-05 9.4558E+00 2.1145E+401  2.8151E+407 3824E+02
Average 5.3746E-05 9.8048E+00 2.1530E+01  2.8967E;04.5443E+02
2(2-3-4)-H-1 Best 4.7416E-05 1.0978E+01 1.4254E+401  1.4361E+07 991BE+02
Average 4.7774E-05 1.1072E+01 1.4428E401  1.4654E+0Z.0406E+02
2(2-4-5)-H-1 Best 8.4882E-05 1.6979E+01 2.4678E+401  3.9372E{07 9693 E+02
Average 8.6256E-05 1.7380E+01] 2.5341E+01 4.1136E;08.2975E+02
2(2-5-1)-H-1 Best 1.5446E-04 2.6004E+01 3.6551E+01 8.1991E107 3095E+03
Average 1.5444E-04 2.6002E+01]] 3.5553E+01  8.1979E;07.3096E+03
2(3-4-5)-H-1 Best 4.92E-05 9.7131E+00 1.7074E+01 1.84E-07 2B503
Average 4.9196E-05 9.7170E+00Q 1.7085E+01  1.8394E{0Z.8611E+02
2(3-5-1)-H-1 Best 6.4777E-05 1.1174E+01 2.3325E+401  3.3285E107 3325E+02
Average 6.5308E-05 1.1460E+01 2.3589E+01  3.3917E{03.4546E+02
2(3-5-2)-H-1 Best 8.6256E-05 1.7580E+01 2.5400E401  4.0591E+407 3235E+02
Average 8.6302E-05 1.7629E+01] 2.5478E+01  4.0963E;06.3623E+02
Table 5: Case-V (1-H-1)
Architecture Training Error Validation Performance Indices (During Testing)
(AMSE) Error (MAPE) MAPE NMSE EV
1(2-3-4-5)-H-1 Best 8.5530E-05 1.7874E+01 2.5704E+D1  4.1545H-07 47660E+02
Average 8.6380E-05 1.8046E+01 2.5974EH01  4.2340B-0%.6135E+02
1(1-3-4-5)-H-1 Best 7.3056E-05 1.2929E+01 2.5396E+p1  3.6849E-07 3218E+02
Average 7.3360E-05 1.3092E+01 2.5503EH01  3.7202E-0%.3753E+02
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Table 5: Contd.,

1(1-2-4-5)-H-1 Best 1.5460E-04 2.6015E+01 3.6557E+D1  8.1981E-07 3099E+03
Average 1.5471E-04 2.6024E+01 3.6565E+H01  8.2008E-07.3105E+03
1(1-2-3-5)-H-1 Best 1.5511E-04 2.6058E+01 3.6599E+Dp1 8.2131E-07 312DE+03
Average 1.5514E-04 2.6060E+01 3.6602E+H01  8.2128H-07.3131E+03
1(1-2-3-4)-H-1 Best 9.6083E-05 1.9662E+01 2.8310E+D1  4.8280E-07 855BE+02
Average 9.8895E-05 2.0012E+01 2.8778E+H01  4.9848H-08.1198E+02
Table 6: Average Ranking of Best Architectures
Rank Architecture Purchase | Sell Bid | Market Clearing | Cleared Volume | Market Clearing
No. Bid (MW) | (MW) Vol (MW) (MW) Price (Rs/MWh)
[ 2(2-3-4)-H-1 \ \
I 4(2)-H-1 \ \ N \
1T 3(2-4)-H-1 \ \ V
\Y; 4(4)-H-1 N N N 3
Y 3(2-3)-H-1 v v v

From Table 6, it is observed that in all the fbvest categories, both Purchase Bid and Market i@kpérice is
available as input data which indicates a goodetation with Market Clearing Price as the targefda the training set.
Therefore, Purchase Bid data is found to be matalda with MCP when training is carried out usiFigBNN.

Since the architecture 2(2-3-4)-H-1 is found tatmebest among all the architectures consideregddormance
evaluation, instead of stopping at 180€poch, the training for the same architectureaisied out for 5000 epochs.
The resultant plots for the training error convexgge and validation error convergence is given igufés 3 and 4,
respectively. The final results of the performaiugices after 5000 epochs are Training Error=3.8408, Validation
Error=8.5732E+00, MAPE=1.1853E+01, NMSE=9.4847Ea6id EV=1.3771E+02.

The forecasted MCP and the actual MCP from Maf¢to@8Viarch 1, 2014 is shown in Figure 5. The forecasted
price for the future week using similar day apptoadll enable the generating companies to carefphyticipate in
bidding process of the electricity price in the Wwedead market.

x 10" Error Plot for Feed Forward Backpropagation Neural Network

Average Mean Squared Error

1000 1500 2000 2500 3000 3500 4000 4500 5000
Number of Epochs

Figure 3: Average Mean Square Error Convergence PiqTraining)
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Figure 4. Mean Absolute Error Percentage Convergene Plot (Validation)
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Figure 5: Forecasted MCP and Actual MCP from March6™ to March 12", 2014
6. CONCLUSIONS

The statistical analysis with the available datahie Indian Energy Exchange shows the importaf¢&cchase
Bid data closely related to MCP even with the nombgenous nature of the data profile. Among 30ouaricombinations
of architectures, the architecture with two inpaties with Purchase Bid and MCP is found to be ssfakin minimizing
the Mean Absolute Error between the forecasted M@& actual MCP. This architecture can be used mergéing
companies in deciding the bidding strategy in tighlly competitive Indian Energy Exchange.
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