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ABSTRACT 

In a deregulated power market, generating companies (Gencos) evaluate bidding strategies to maximize their 

profit. A Genco has to make a decision based on limited information available, since it does not know the actual system 

Market Clearing Price (MCP) beforehand. Thus, an optimal bidding strategy is a challenging task for GenCos.                   

Accurately forecasted MCP will aid as vital information in enhancing the chances of winning bids in today’s competitive 

electricity markets. Based on the literatures, neural networks are used in most of the forecasting applications. This paper 

proposes a near optimal ANN architecture based electricity price forecast engine using the available historical data for 

forecasting MCP in Indian Energy exchange (IEX). This paper uses a similar-day approach for forecasting the MCP.              

The recent available historical data from 1st January 2014 to 16th March 2014 is used in this research work. This paper also 

investigates the performance related issues with the various ANN architecture models. 

KEYWORDS:  Error Variance, Feed Forward Back Propagation Neural Network, Market Clearing Price, Mean Absolute 

Percentage Error, Normalized Mean Square Error 

1. INTRODUCTION 

 A decisive issue for all market participants in today’s restructured electricity power industry has been the 

electricity price forecasting. A precise price forecasting helps suppliers to set up bidding strategies, make investment 

decisions and be cautious against risks. Conversely, consumers can use price forecasting to exploit appropriate power 

purchasing strategies for maximum utility utilization. Electricity market clearing price (MCP) is the price that exists when 

an electric market is clear of shortage and surplus [1]. It is the final outcome of market bidding price. When electricity 

MCP is determined, every supplier whose offering price is below or equal to the electricity MCP will be picked up to 

supply electricity at that hour. They will be paid at the same price, the electricity MCP, not the price they offered.                   

The reason for this is to keep fairness of the market and to avoid market manipulation. The accuracy of the forecast 

depends on the availability of the data and further depends on other influential price drivers such as volatility in fuel price, 

load uncertainty, fluctuations in hydroelectricity production, generation uncertainties, transmission congestion, behaviour 

of market participants etc… 

 Owing to the significance and intricacies of the electricity price forecasting, several methods have been proposed 

by researchers for short-term price forecasting. Among these methods, two extensively used approaches are time series [2] 
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models and artificial neural networks (ANNs)[3]. Time series models such as dynamic regression and transfer function, 

ARIMA [1], EGARCH (exponential GARCH) [4,5], WT-ARIMA model [6] have been proposed for this purpose. 

However, most time series models are linear predictors, which have difficulties in predicting the hard nonlinear behaviour 

of electricity price. 

 ANNs have also been used by many researchers for price forecasting. Yamin et al. [7] have proposed a 

comprehensive model using ANN for short-term electricity price forecasting. Zhang et al. [8] have applied the cascaded 

architecture of multiple ANN to forecast the market clearing price (MCP) in New England to improve the prediction 

accuracy, other approaches considering hybrid model have been proposed. Rodriguez and Anders [9] have proposed a 

combination of neural networks and fuzzy logic for MCP prediction in the Ontario electricity market. Li et al. [10] have 

presented the fuzzy inference system and least-squares estimation for price forecasting. Though ANN based forecast 

engines are developed, the network architecture and the manner in which the available historical data being used will be 

different for different electricity markets or energy exchanges. Therefore, with the available data, designing the near 

optimal ANN architecture for a typical exchange is always challenging. 

2. PROPOSED WORK 

 The proposed work is carried out for forecasting market clearing price of the Indian Energy Exchange. Not so 

many literatures are available for the forecast of MCP in the Indian Energy Exchange (IEX). IEX is one of the India’s 

electricity power trading platform, Over 2600 participants across utilities from 27 states, 5 Union Territories,                           

more than 500 private generators and more than 2300 open access consumers are doing business with IEX to manage 

power portfolio in the most competitive and reliable way. Day-Ahead and Term-Ahead market is followed in the                  

IEX. Day-Ahead-Market (DAM) is a physical electricity trading market for deliveries for any/some/all 15 minute time 

blocks in 24 hours of next day starting from midnight. The prices and quantum of electricity to be traded are determined 

through a double sided closed auction bidding process. Term-Ahead-Market (TAM) provides a range of products allowing 

participants to buy/sell electricity for contracts beyond day-ahead market, besides intraday contracts [www.iexindia.com]. 

The proposed work concentrates in forecasting the hourly Weak-Ahead Market Clearing price which is the part of              

TAM using a similar day approach using feed forward back propagation neural network (FFBPNN).  

 The activities of the consumers are found to be similar on the same week days. So, in this case study, MCP of 

similar days is correlated for training the historical MCP data. For example, the MCP profile on Monday of the previous 

week is correlated to Monday of the present week. So when a test input is fed into the forecast model, a week-ahead MCP 

profile is forecasted. Various architectures of FFBPNN are tried out and the best one is proposed. The data is pre-processed 

by normalizing the load between 0.1 and 0.9 and is used in this work. 

3. HISTORICAL DATA OF IEX 

 The historical data reports that are available in the IEX website as market snapshot are considered in the proposed 

work. The market snap shot consist of the hourly Purchase Bid (MW), Sell Bid (MW), Market Clearing Volume (MW), 

Cleared Volume (MW) and Market Clearing Price (MCP). Market Clearing Volume (MCV) is carried out before 

transmission congestion, whereas Cleared Volume (CV) is carried out after transmission congestion. It is very important to 

understand the nature of the recorded data which may be vital or very much related to the MCP. Sometimes,                              
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the performance of the forecast largely varies due to the homogeneity of the data used. It should be noted that the Market 

Clearing Price is non-homogenous in nature. Therefore, understanding the shape of the historical data, it will be easier to 

choose the right data for the development of the proposed forecast engine. The market snapshot data for first 75 days is 

presented in the Figure 1. 

0 200 400 600 800 1000 1200 1400 1600 1800
0

5000

10000
P

B
(M

W
)

1st Jan 2014 - 16th March 2014

Purchase Bid Price in Indian Energy Exchange

0 200 400 600 800 1000 1200 1400 1600 1800
0

5000

10000

S
B

(M
W

)

1st Jan 2014 - 16th March 2014

Sell Bid Price in Indian Energy Exchange

0 200 400 600 800 1000 1200 1400 1600 1800
0

5000

10000

C
V

(M
W

)

1st Jan 2014 - 16th March 2014

Cleared Volume in Indian Energy Exchange

0 200 400 600 800 1000 1200 1400 1600 1800
0

5000

10000

M
C

V
(M

W
)

1st Jan 2014 - 16th March 2014

Market Clearing Volume in Indian Energy Exchange

0 200 400 600 800 1000 1200 1400 1600 1800
0

5000

10000

M
C

P
(I

N
R

/M
W

h
)

1st Jan 2014 - 16th March 2014

Market Clearing Price in Indian Energy Exchange

 

Figure 1: Market Snapshot of Historical Data (1st 75 Days of the Year 2014) 

 The total number of samples for the 75 days is 19320. The wave form profile of Purchase Bid (PB), Sell Bid (SB), 

Market Clearing Volume (MCV), Cleared Volume (CV) and Market Clearing Price (MCP) are found to be homogenous in 

nature. Since the all data is non- homogenous in nature, the correlation of any combination of the 5 waveforms                   

(PB, SB, MCV, CV and MCP) with that of the Market Clearing Price (MCP) need to be explored in the forecast engine. 

However, all possible architectures will be tried out in the following section before a near optimal ANN model is proposed 

for the IEX. The training data, validation data and the testing data for the FFBNN is considered only from the                         

19320 samples. The source and the target training data for FFBNN training is taken from 1st Jan 2014 to 26th Feb 2014, and 

from 8th Jan 2014 to 5th Mar 2014, respectively. The validation data is taken from 12th Feb 2014 to 19th Feb 2014 and is 

compared with the actual data from 20th Feb 2014 to 26th Feb 2014. The testing or verification data is taken from                       

26th Feb 2014 to 5th Mar 2014, and is compared with the actual data from 6th Mar 2014 to 12th Mar 2014. It should be noted 

that the testing data is not used in the training set whereas the validation data is used in the training set. Validation is 

carried out while training to check that the network do not over train, thereby the forecast accuracy will not deteriorate. 

4. PROPOSED METHODOLOGY 

4.1 Architecture 

 The architecture of the feed forward back propagation neural network is given in Figure 2. This ANN model 

consists of ‘M’ input nodes and ‘O’ output nodes with ‘H’ hidden nodes in the hidden layer. The hidden layer and the 

output layer nodes consist of log-sigmoid transfer function whose output value will in the range between 0 and 1. 
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Figure 2: Architecture of Feed Forward Back Propagation Neural Network (FFBPNN) 

 The historical dataset is usually not used directly in process modelling of ANNs due to the difference in 

magnitude of the process variables. Therefore, the data needs to be scaled to a fixed range to prevent unnecessary 

domination of certain variables, and to prevent data with larger magnitude from overriding the smaller and impede the 

premature learning process. The choice of range depends on transfer function of the output nodes in ANN. Typically,                

[0, 1] for sigmoid function and [-1, 1] for hyperbolic tangent function. However, due to nonlinear transfer function has 

asymptotic limits; the range of dataset is always set slightly less than the lower and upper limits. In this work, since the 

sigmoid function is adopted, the data is normalized in the range of [0.1-0.9]. i.e., If 1x and 2x is the maximum and 

minimum value of the training set, respectively, then the normalised data is given by )x(Ν as in (4.1). 
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 Based on the data being sent in the forecast engine the following cases of various architectures are proposed and 

the performance related to training error and forecast accuracy are discussed. In all possible architecture the output node 

remains one and the number of hidden nodes is set based on trial and error. To understand the relationship of all the                     

5 waveforms with that of the MCP, the number of input nodes varies from 1 to 5. The training data set, validation data and 

testing data is created based on the similar day approach. 

Case-I (5-H-1 FFBNN Architecture) 

 The network architecture consists of 5 input nodes and 1 output node. All the 5 input waveforms are given as 

input for the training set. 

Case-II (4-H-1 FFBNN Architecture) 

 The network architecture consists of 4 input nodes and 1 output node. If the 5 waveforms are represented as                  

(PB,-1 SB-2, MCV-3, CV-4 and MCP-5), then the following 5 combination of input data need to be evaluated for the       

ANN model. They are 4(1)-H-1, 4(2)-H-1, 4(3)-H-1, 4(4)-H-1 and 4(5)-H-1. The number within the bracket is the 

waveform which is not considered. For example, in 4(2)-H-1, the 2nd waveform (Sell Bid Price) is not considered.  

Case-III (3-H-1 FFBNN Architecture) 

 The network architecture consists of 3 input nodes and 1 output node. There will be 10 possible combinations. 
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They are 3(1-2)-H-1, 3(1-3)-H-1, 3(1-4)-H-1, 3(1-5)-H-1, 3(2-3)-H-1, 3(2-4)-H-1, 3(2-5)-H-1, 3(3-4)-H-1, 3(3-5)-H-1 and 

3(4-5)-H-1. The numbers within the bracket are the waveform which are not considered 

Case-IV (2-H-1 FFBNN Architecture) 

 The network architecture consists of 2 input nodes and 1 output node. There will be 9 possible combinations. 

They are 2(1-2-3)-H-1, 2(1-3-4)-H-1, 2(1-4-5)-H-1, 2(2-3-4)-H-1, 2(2-4-5)-H-1, 2(2-5-1)-H-1, 2(3-4-5)-H-1, 2(3-5-1)-H-1 

and 2(3-5-2)-H-1.  

Case-V (1-H-1 FFBNN Architecture) 

 The network architecture consists of 2 input nodes and 1 output node. There will be 5 possible combinations. 

They are 1(2-3-4-5)-H-1, 1(1-3-4-5)-H-1, 1(1-2-4-5)-H-1, 1(1-2-3-5)-H-1 and 1(1-2-3-4)-H-1.  

4.2 Step by Step Algorithm of FFBPNN Architecture 

Nomenclature 

 I          Input training vector 

           )i,...,i,...,i(I Mn1=  

 T        Output target vector 

           )t,...,t,...,t(T Oy1=  

 δy           Error correction weight adjustment for why due to an error at output unit Ky 

           δh Error correction weight adjustment for vnh due to an error at hidden unit Jh 

 α        Learning rate 

 
)sumexp(1

1
)sum(f

−+
=  Activation function or Threshold function 

 Step 1: Set the trial number tr =1 

 Step 2: Set the epoch ep =1 

Step 3: Generate the weights randomly to small random values between 0 and 1 to ensure that the network is not 

saturated by large values of weights. Let I and T be the normalized input and target training vector from 

set of P number of training patterns. 

Step 4: Choose a training pair from the training set. 

Step 5: For each training pair, do steps 6 -11 

Step 6: Each input unit receives input signal in and broadcasts this signal to all units in the hidden layer J. 

Step 7: Each hidden unit Jh sums its weighted input signals and the net input to the hidden unit is given as in 

(4.2) and the output at the hidden layer (J) is given as in (4.3). Send the output of the hidden layer signals 

to all units in the output units. 
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)sumexp(1
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)sum(f

Jh
Jh −+
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Step 8: Each output unit Ky sums its weighted input signals and the net input to the output unit is given as in 

(4.4) and the output at the output layer (K) is given as in (4.5). 

 ,WJbsum
H

1h
hyhKKy ∑

=

×+=                                                                                                                            (4.4) 

 
)sumexp(1

1
)sum(f

Ky
Ky −+

=                                                                                                                                   (4.5) 

Back Propagation of Error 

Step 9: Each output unit Ky receives a target pattern corresponding to the input training pattern, computes its 

error information term as in (4.6) and calculates its weight correction term as in (4.7) which is used to 

update Why later. 

 )sum(f)Kt( Ky
'

yyy ×−=δ                                                                                                                          (4.6) 

 )sum(fw Jhyhy ×δ×α=∆                                                                                                                              (4.7) 

 The bias correction term is given in (4.8) 

 yKb δ×α=∆                                                                                                                                                     (4.8) 

Step 10: Each hidden unit Jh sums its delta inputs as in (4.9), multiplies by the derivative of its activation function 

to calculate its error information term as in (4.10) and calculates its weight correction term as in (4.11)  

 ,Wsum
O

1n
hyyJ ∑

=
δ ×δ=                                                                                                                                       (4.9)  

 )sum(fsum Jh
'

Jh ×=δ δ                                                                                                                                 (4.10) 

 nhnh iv ×δ×α=∆                                                                                                                                          (4.11) 

 The bias correction term is given in (4.12) 

 hJ xb δα=∆                                                                                                                                                     (4.12)  

Update Weights and Biases 

Step 11: Each output unit Ky updates its weights and bias as in (4.13) and (4.14). Also each hidden unit Jh updates 

its weights and bias as in (4.15) and (4.16).  
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 hyhyhy w)old(w)new(w ∆+=                                                                                                                     (4.13) 

 KKK b)old(b)new(b ∆+=                                                                                                                           (4.14) 

 nhnhnh w)old(w)new(w ∆+=                                                                                                                      (4.15) 

 JJJ b)old(b)new(b ∆+=                                                                                                                               (4.16) 

 Go to Step 5, till all the training pairs in the training set are sent into the input layer I (one epoch is over). 

Otherwise go to Step 12. 

Step 12: Do again Step 4 to Step 8 till all the training pairs in the training set are sent into the input layer I. 

Calculate the error (ε ), the difference between the network output and the desired output, for all the 

training pairs as in (4.17) and then the average mean squared error (AMSE) as in (4.18), which is 

calculated for every epoch. Update ep=ep+1. 

 y
p

y
p

y
p KT −=ε                                                                                                                                                         (4.17) 
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Step 13: Repeat steps 2-12, if ep<TE (total number epochs), else go to step 14. The total number of epochs is 

fixed based on trial and error approach such that the AMSE obtained is the least. Record the final 

weights and biases obtained for the trial number tr =1. Update tr = tr+1. Also if the validation error is 

increasing and if the number validation checks are greater than the validation count (VC), then stop the 

training for the current trial and update tr = tr+1. 

Step 14: Do sufficient numbers of trials (TR) and record the final weights obtained in each of the trials.                       

If tr < TR, go to step 1, else stop the execution.  

4.3 Performance Evaluation 

 The accuracy of the results in this case study is evaluated based on three error indices. They are: Mean Absolute 

Percentage Error (MAPE), Normalized Mean Square Error (NMSE) and Error Variance (EV). The Mean Absolute 

Percentage Error (MAPE) is defined by the following equation (4.19). 

∑
=

−
=
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1i iA
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1
MAPE                                                                                                                               (4.19) 

 NMSE (Nima Amjady et al, 2011) [11] is defined as 
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 EV (Nima Amjady et al, 2011) [11] is defined as 
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 Where, Pi and Ai are the ith predicted and actual values respectively, AAve is the mean of the actual value and NH is 

the total number of predictions. 

5. RESULTS AND DISCUSSIONS 

The five types of architectures mentioned in section 4.1 is simulated for ten number of trials. A statistical analysis 

considering the average of the performance indices for all the trials is evaluated. The parameter settings in all the five 

architectures such as learning rate (0.9), momentum factor (0.9), slope factor (0.05) and validation count (VC=10) are kept 

same so as to have a fair comparison on the same reference among the architectures. The weights and bias are initialized 

randomly between zero to one. The number of epochs is kept same for all the architectures as 1000. The number of nodes 

in the hidden layer is kept as H=20. 

Tables 1-5 give the best and average of all the performance indices for all the cases. From the results (Table 1-5), 

five best performing architectures are grouped based on the lowest average error and are given five ranks according to their 

performance in Table 6 below. Table 6 gives the details of the five best architectures. Here, the network which consists of 

two input nodes with Purchase Bid and Market Clearing Price data as input is ranked I as the best performing architecture 

with an average Training Error=4.7774E-05, Validation Error=1.1072E+01, MAPE=1.4428E+01, NMSE=1.4654E-07 and 

EV=2.0406E+02. 

Table 1: Case-I (5-H-1) 

Architecture 
Training 

Error (AMSE) 
Validation 

Error (MAPE) 
Performance Indices (Testing/Verification) 

MAPE NMSE EV 

5-H-1 
Best 4.0499E-05 8.2242E+00 1.4681E+01 1.3885E-07 2.1127E+02 
Average 4.0543E-05 8.2406E+00 1.4689E+01 1.3894E-07 2.1149E+02 

 

Table 2: Case-II (4-H-1) 

Architecture 
Training 

Error (AMSE) 
Validation 

Error (MAPE) 
Performance Indices (Testing/Verification) 

MAPE NMSE EV 

4(1)-H-1 
Best 4.0828E-05 7.5049E+00 1.5701E+01 1.6034E-07 2.4163E+02 
Average 4.0901E-05 7.5264E+00 1.5772E+01 1.6137E-07 2.4383E+02 

4(2)-H-1 
Best 4.7406E-05 1.0906E+01 1.4421E+01 1.4131E-07 2.0383E+02 
Average 4.7583E-05 1.0937E+01 1.4474E+01 1.4244E-07 2.0533E+02 

4(3)-H-1 
Best 4.2252E-05 8.5164E+00 1.4889E+01 1.4046E-07 2.1730E+02 
Average 4.2263E-05 8.5186E+00 1.4905E+01 1.4063E-07 2.1774E+02 

4(4)-H-1 
Best 4.0448E-05 8.1838E+00 1.4548E+01 1.3752E-07 2.0745E+02 
Average 4.0483E-05 8.2066E+00 1.4572E+01 1.3787E-07 2.0812E+02 

4(5)-H-1 
Best 4.7194E-05 9.2728E+00 1.6891E+01 1.8534E-07 2.7964E+02 
Average 4.7280E-05 9.2766E+00 1.6902E+01 1.8582E-07 2.8003E+02 
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Table 3: Case-III (3-H-1) 

Architecture Training 
Error (AMSE) 

Validation 
Error (MAPE) 

Performance Indices (Testing/Verification) 
MAPE NMSE EV 

3(1-2)-H-1 
Best 6.1538E-05 1.4202E+01 2.1478E+01 2.9060E-07 4.5216E+02 
Average 6.2337E-05 1.4333E+01 2.1689E+01 2.9536E-07 4.6109E+02 

3(1-3)-H-1 
Best 4.6265E-05 8.2380E+00 1.6989E+01 1.7785E-07 2.8291E+02 
Average 4.6409E-05 8.2643E+00 1.7067E+01 1.7906E-07 2.8551E+02 

3(1-4)-H-1 
Best 4.0168E-05 7.3845E+00 1.5777E+01 1.5679E-07 2.4400E+02 
Average 4.0397E-05 7.4171E+00 1.5895E+01 1.5850E-07 2.4766E+02 

3(1-5)-H-1 
Best 5.2585E-05 9.2638E+00 2.0495E+01 2.7967E-07 4.1172E+02 
Average 5.3010E-05 9.4481E+00 2.0744E+01 2.8455E-07 4.2184E+02 

3(2-3)-H-1 
Best 4.7303E-05 1.0974E+01 1.4325E+01 1.4119E-07 2.0112E+02 
Average 4.8002E-05 1.1118E+01 1.4593E+01 1.4650E-07 2.0876E+02 

3(2-4)-H-1 
Best 4.8068E-05 1.0962E+01 1.4412E+01 1.4603E-07 2.0358E+02 
Average 4.8278E-05 1.1010E+01 1.4495E+01 1.4744E-07 2.0595E+02 

3(2-5)-H-1 
Best 8.6617E-05 1.6717E+01 2.4366E+01 3.8160E-07 5.8191E+02 
Average 8.6632E-05 1.6779E+01 2.4474E+01 3.8511E-07 5.8711E+02 

3(3-4)-H-1 
Best 4.2215E-05 8.4959E+00 1.4847E+01 1.3919E-07 2.1606E+02 
Average 4.2196E-05 8.5052E+00 1.4860E+01 1.3918E-07 2.1645E+02 

3(3-5)-H-1 
Best 4.9472E-05 9.7010E+00 1.7193E+01 1.8833E-07 2.8972E+02 
Average 4.9520E-05 9.7126E+00 1.7207E+01 1.8871E-07 2.9020E+02 

3(4-5)-H-1 
Best 4.6918E-05 9.2394E+00 1.6725E+01 1.8273E-07 2.7419E+02 
Average 4.6843E-05 9.2562E+00 1.6752E+01 1.8299E-07 2.7506E+02 

 

Table 4: Case-IV (2-H-1) 

Architecture 
Training 

Error (AMSE) 
Validation 

Error (MAPE) 
Performance Indices (During Testing) 
MAPE NMSE EV 

2(1-2-3)-H-1 
Best 7.7646E-05 1.7006E+01 2.5066E+01 3.8325E-07 6.1585E+02 
Average 8.6740E-05 1.8319E+01 2.6790E+01 1.5502E-05 7.0496E+02 

2(1-3-4)-H-1 
Best 4.8678E-05 8.4985E+00 1.8032E+01 1.8559E-07 3.1870E+02 
Average 4.8842E-05 8.5286E+00 1.8109E+01 1.8707E-07 3.2145E+02 

2(1-4-5)-H-1 
Best 5.2865E-05 9.4558E+00 2.1145E+01 2.8151E-07 4.3824E+02 
Average 5.3746E-05 9.8048E+00 2.1530E+01 2.8967E-07 4.5443E+02 

2(2-3-4)-H-1 
Best 4.7416E-05 1.0978E+01 1.4254E+01 1.4361E-07 1.9916E+02 
Average 4.7774E-05 1.1072E+01 1.4428E+01 1.4654E-07 2.0406E+02 

2(2-4-5)-H-1 
Best 8.4882E-05 1.6979E+01 2.4678E+01 3.9372E-07 5.9691E+02 
Average 8.6256E-05 1.7380E+01 2.5341E+01 4.1136E-07 6.2975E+02 

2(2-5-1)-H-1 
Best 1.5446E-04 2.6004E+01 3.6551E+01 8.1991E-07 1.3095E+03 
Average 1.5444E-04 2.6002E+01 3.5553E+01 8.1979E-07 1.3096E+03 

2(3-4-5)-H-1 
Best 4.92E-05 9.7131E+00 1.7074E+01 1.84E-07 2.8575E+02 
Average 4.9196E-05 9.7170E+00 1.7085E+01 1.8394E-07 2.8611E+02 

2(3-5-1)-H-1 
Best 6.4777E-05 1.1174E+01 2.3325E+01 3.3285E-07 5.3325E+02 
Average 6.5308E-05 1.1460E+01 2.3589E+01 3.3917E-07 5.4546E+02 

2(3-5-2)-H-1 
Best 8.6256E-05 1.7580E+01 2.5400E+01 4.0591E-07 6.3235E+02 
Average 8.6302E-05 1.7629E+01 2.5478E+01 4.0963E-07 6.3623E+02 

 

Table 5: Case-V (1-H-1) 

Architecture 
Training Error 

(AMSE) 
Validation 

Error (MAPE) 

Performance Indices (During Testing) 

MAPE NMSE EV 

1(2-3-4-5)-H-1 
Best 8.5530E-05 1.7874E+01 2.5704E+01 4.1545E-07 6.4760E+02 
Average 8.6380E-05 1.8046E+01 2.5974E+01 4.2340E-07 6.6135E+02 

1(1-3-4-5)-H-1 
Best 7.3056E-05 1.2929E+01 2.5396E+01 3.6849E-07 6.3218E+02 
Average 7.3360E-05 1.3092E+01 2.5503E+01 3.7202E-07 6.3753E+02 
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Table 5: Contd., 

1(1-2-4-5)-H-1 
Best 1.5460E-04 2.6015E+01 3.6557E+01 8.1981E-07 1.3099E+03 
Average 1.5471E-04 2.6024E+01 3.6565E+01 8.2008E-07 1.3105E+03 

1(1-2-3-5)-H-1 
Best 1.5511E-04 2.6058E+01 3.6599E+01 8.2131E-07 1.3129E+03 
Average 1.5514E-04 2.6060E+01 3.6602E+01 8.2128E-07 1.3131E+03 

1(1-2-3-4)-H-1 
Best 9.6083E-05 1.9662E+01 2.8310E+01 4.8280E-07 7.8555E+02 
Average 9.8895E-05 2.0012E+01 2.8778E+01 4.9848E-07 8.1198E+02 

 

Table 6: Average Ranking of Best Architectures 

Rank 
No. 

Architecture 
Purchase 
Bid (MW) 

Sell Bid 
(MW) 

Market Clearing 
Vol (MW) 

Cleared Volume 
(MW) 

Market Clearing 
Price (Rs/MWh) 

I 2(2-3-4)-H-1 √    √ 
II 4(2)-H-1 √  √ √ √ 
III 3(2-4)-H-1 √  √  √ 
IV 4(4)-H-1 √ √ √  √ 
V 3(2-3)-H-1 √   √ √ 

 

 From Table 6, it is observed that in all the five best categories, both Purchase Bid and Market Clearing Price is 

available as input data which indicates a good correlation with Market Clearing Price as the target data in the training set. 

Therefore, Purchase Bid data is found to be more suitable with MCP when training is carried out using FFBNN. 

Since the architecture 2(2-3-4)-H-1 is found to be the best among all the architectures considered for performance 

evaluation, instead of stopping at 1000th epoch, the training for the same architecture is carried out for 5000 epochs.               

The resultant plots for the training error convergence and validation error convergence is given in Figures 3 and 4, 

respectively. The final results of the performance indices after 5000 epochs are Training Error=3.8409E-05, Validation 

Error=8.5732E+00, MAPE=1.1853E+01, NMSE=9.4847E-08 and EV=1.3771E+02. 

The forecasted MCP and the actual MCP from March 6th to March 12th, 2014 is shown in Figure 5. The forecasted 

price for the future week using similar day approach will enable the generating companies to carefully participate in 

bidding process of the electricity price in the week-ahead market. 
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Figure 3: Average Mean Square Error Convergence Plot (Training) 
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Figure 4: Mean Absolute Error Percentage Convergence Plot (Validation) 
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Figure 5: Forecasted MCP and Actual MCP from March 6th to March 12th, 2014 

6. CONCLUSIONS 

 The statistical analysis with the available data in the Indian Energy Exchange shows the importance of Purchase 

Bid data closely related to MCP even with the non-homogenous nature of the data profile. Among 30 various combinations 

of architectures, the architecture with two input nodes with Purchase Bid and MCP is found to be successful in minimizing 

the Mean Absolute Error between the forecasted MCP and actual MCP. This architecture can be used by generating 

companies in deciding the bidding strategy in the highly competitive Indian Energy Exchange.  
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